Meeting them halfway: Altering language conventions to facilitate human-robot interaction

Lize Alberts

Abstract


This article considers the remaining hindrances for natural language processing technologies in achieving open and natural (human-like) interaction between humans and computers. Although artificially intelligent (AI) systems have been making great strides in this field, particularly with the development of deep learning architectures that carry surface-level statistical methods to greater levels of sophistication, these systems are yet incapable of deep semantic analysis, reliable translation, and generating rich answers to open-ended questions. I consider how the process may be facilitated from our side, first, by altering some of our existing language conventions (which may occur naturally) if we are to proceed with statistical approaches, and secondly, by considering possibilities in using a formalised artificial language as an auxiliary medium, as it may avoid many of the inherent ambiguities and irregularities that make natural language difficult to process using rule-based methods. As current systems have been predominantly English-based, I argue that a formal auxiliary language would not only be a simpler and more reliable medium for computer processing, but may also offer a more neutral, easy-to-learn lingua franca for uniting people from different linguistic backgrounds with none necessarily having the upper hand.


Keywords


natural language processing, artificial language, symbolic AI, computational linguistics, international auxiliary language

Full Text:

PDF


DOI: https://doi.org/10.5842/56-0-799

Refbacks

  • There are currently no refbacks.





ISSN 2224-3380 (online); 1726-541X (print)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License


Powered by OJS and hosted by Stellenbosch University Library and Information Service since 2011.


Disclaimer:

This journal is hosted by the SU LIS on request of the journal owner/editor. The SU LIS takes no responsibility for the content published within this journal, and disclaim all liability arising out of the use of or inability to use the information contained herein. We assume no responsibility, and shall not be liable for any breaches of agreement with other publishers/hosts.

SUNJournals Help